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Abstract

Visual data in autonomous driving perception, such as
camera image and LiDAR point cloud, can be interpreted
as a mixture of two aspects: semantic feature and geometric
structure. Semantics come from the appearance and con-
text of objects to the sensor, while geometric structure is the
actual 3D shape of point clouds. Most detectors on LiDAR
point clouds focus only on analyzing the geometric structure
of objects in real 3D space. Unlike previous works, we pro-
pose to learn both semantic feature and geometric structure
via a unified multi-view framework. Our method exploits
the nature of LiDAR scans — 2D range images, and applies
well-studied 2D convolutions to extract semantic features.
By fusing semantic and geometric features, our method out-
performs state-of-the-art approaches in all categories by a
large margin. The methodology of combining semantic and
geometric features provides a unique perspective of looking
at the problems in real-world 3D point cloud detection.

1. Introduction

With the recent advent of autonomous vehicles, detect-
ing and localizing obstacles on LiDAR point clouds has be-
come a popular research topic. While the output of LIDAR
sensors is three-dimensional, it is fundamentally different
than true 3D data (such as 3D mesh models). Because of
the sweeping mechanics of LiDAR, the data can be densely
represented in 2D format (range image). This is commonly
referred to as 2.5D [5]. Many popular 3D detectors like
PointPillars [11] often ignore such fact and treat the Li-
DAR data purely as a collection of (z,y, z,4) points (i is
the point’s intensity or reflectance). Though these works
achieve good performance on detection tasks, they do not
take advantage of the intrinsic structure of the data.

The simplest way to address this issue is to format the
data as normal 2D images and to apply well-studied 2D im-
age detectors on them. However, this solution has several
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Figure 1. LiDAR can be interpreted semantically and geometri-
cally by nature. PanoNet3D utilize both information for LiDAR
object detection.

drawbacks. First, spatial coordinates are fundamentally dif-
ferent from images’ RGB values. The spatial structure of
points cannot be easily extracted from 2D convolutions on
the projected range image. Second, range images are not
scale-invariant. That is, closer objects contain a much larger
number of pixels compared to objects that are far away. Var-
ious scales of objects make it hard for the network to gener-
alize.

While 2D convolution is not efficient at understanding
the 3D geometric structure of point clouds, it can still ex-
tract meaningful deep semantic features from range images
just like from conventional color pictures. We argue that
combining both deep semantic features from range images
and raw geometric structures from 3D point clouds together
can yield better detection results. More specifically, in the
first step, we extract semantics from the projected range
image with a fully convolutional network (FCN). The out-
put high dimensional semantic features are then fused with
low dimensional raw geometric features which are usually
computed by simple geometric manipulations or shallow
networks. Final predictions are generated from a main-
stage detector with a 3D sparse convolutional network as the



backbone. In such manner, we utilize semantics from 2.5D
range images while keeping scale invariance in 3D space
at the same time. Our experiment shows that additional
semantic features significantly improve the detection per-
formances on NuScenes [2] dataset, surpassing the current
first-place method CBGS [26] on the official leader-board.
The key contributions of this work are the following:

e We introduce PanoNet3D, a novel approach that feeds
both deep semantic features and raw geometric fea-
tures of point cloud data to the main detector. By doing
so, the detector is exposed to both the spatial structure
of point cloud as well as semantic information natural
to the LiDAR sensor.

e PanoNet3D achieves significant improvements on both
single-sweep input and multiple-sweep LiDAR input.
Our design of temporal aggregation allows aggregating
multiple scanned frames for denser input data without
the redundancy of repeatedly running the same seman-
tic feature extraction network on these frames.

e The integration of a pano-view feature extractor of
PanoNet3D enables natural and simple removal of oc-
cluded points after a crop-and-paste data augmenta-
tion. Handling occlusions of augmented objects is hard
in bird-eye view and is often ignored by BEV detec-
tors.

e PanoNet3D beats state-of-the-art (SOTA) performance
on 3D object detection. With several improvements
on network architectures, it achieves 0.54 mAP on
NuScenes dataset detection challenge, out-performing
PointPillars [11] and CBGS [26].

2. Related Work
2.1. Point Cloud Representation

Deep learning architectures take different formats of 3D
point clouds as input. The first class consumes raw point
clouds directly, including PointNet [16], PointNet++ [17],
and PointRCNN [19]. This type of approaches require no
pre-processing of point clouds (such as voxelization or ren-
dering), but their performance suffers when the scene is
large and sparse. For common LiDAR sensors, a single
sweep typically contains over 50,000 points. So these net-
works usually need to down-sample input, losing the reso-
lution of raw data.

Some networks simply treat point clouds as a bird-
eye-view (BEV) image, e.g., AVOD [10] and Complex-
YOLO [20]. BEV images work particularly well for LIDAR
point clouds as we usually only care about x-y (2D) local-
ization of objects. This formatting allows 2D image detec-
tion frameworks to be re-applied on point clouds at the cost
of partly losing vertical geometric structure information.

Another type of 3D point cloud formatting is voxeliza-
tion. Examples include VoxelNet [25], SECOND [21], and
PIXOR [22]. Voxelized point cloud usually has a finite spa-
tial size with pooling as the technique to convert per-point
features to per-voxel features. The performance of this class
of detectors is usually linked to voxel resolution.

Recently, LaserNet [15] shows that when the size of the
training dataset is large enough, detectors performing on
the perspective view of point clouds (range images) can
achieve performance on par with BEV detectors. Similarly,
MVF [24] extracts semantics from both range images and
BEV images with two 2D convolutional towers. For point
clouds scanned by LiDARs, the range image format is much
denser and has no range limits compared to BEV-based rep-
resentations.

2.2. Object Detection

Object detection has traditionally been studied on 2D im-
ages. Various Convolutional Neural Network (CNN) detec-
tors are proposed since R-CNN [4]. These detectors can
be categorized into two major classes: two-stage detec-
tors and single-stage detectors. Two-stage detectors usually
consist of a Region Proposal Network (RPN) [18&] that pro-
duces candidate region proposals and a second stage net-
work regressing the final bounding boxes. On the other
hand, single-stage detectors rely on a Single Shot Detector
(SSD) [13] that densely produces bounding box predictions
with a single fully convolutional network (FCN). Single-
stage detectors are simpler and typically faster than two-
stage detectors. With focal loss [12] alleviating the problem
of foreground-background class imbalance, singlnie-stage
detectors can achieve similar or even better results com-
pared to two-stage detectors.

Object detection on 3D point clouds is a more recent
research topic. Many works borrow ideas from 2D im-
age detectors as there is no fundamental difference between
these two tasks. The only necessary modification of the de-
tection head is the regression of additional parameters re-
quired to define 3D bounding boxes. Many modern point
cloud detectors adopt single-stage frameworks, including
SECOND [21], PointPillars [1 1], PIXOR [22], and Laser-
Net [15]. Single-stage point cloud detector is more favor-
able for autonomous driving applications due to its simplic-
ity and fast inference speed.

2.3. Detection on LiDAR Point Cloud

Object detection on LiDAR point cloud data has several
domain-specific problems. We discuss convolution types,
temporal aggregation, and data augmentation below.
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Figure 2. PanoNet3D’s framework for point cloud detection. The top branch takes LiDAR point cloud as input and decorates raw point
features with several simple local geometric features. The lower branch converts point cloud to pseudo range image and feeds it into a 2D
FCN to get per-pixel deep semantic feature. The output features of these two branches are then aggregated and passed to the main detector.
A final bounding box head generates detected proposals on the BEV plane.

2.3.1 Convolution Types

Intuitively, voxelized point cloud data is a 3D tensor and
thus the detector should consist of 3D convolution layers.
Because of the sparsity of LiDAR data, GPU-accelerated
sparse implementation of 3D convolution is usually ap-
plied [21] in order to significantly reduce time and memory
consumption. PointPillars [ 1] converts 3D inputs to 2D by
using a pillar feature encoder that outputs per grid feature
embedding on the x-y (BEV) plane. This allows the detec-
tor to use regular 2D convolutional layers that are highly
optimized on GPUs by many deep learning libraries.

2.3.2 Temporal Aggregation

Some detectors aggregate multiple consecutive LiDAR
sweeps and show that temporal information can improve de-
tection performance. FaF [14] treats temporal information
as an additional dimension of the input tensor, i.e., multi-
ple frames are appended along a new dimension to create a
4D tensor. SECOND [21] proposes a simpler solution that
adds relative temporal stamp to each point as an extra input
channel (the input tensor remains 3D). We need to pay spe-
cial attention to ego motion during temporal aggregation as
the reference coordinate system shifts with the ego vehicle’s
movement.

2.3.3 Multi-view Aggregation

MV3D [3] proposed a multi-view detection network which
has two detection branches, one for BEV and one for range
view (RV). The results of the two branches are fused af-
terwards. While MV3D explores the possibility of jointly
using both BEV and RV for point cloud detection, the paper

does not give the justification of why the two views should
be used jointly. RV is what the sensor sees in raw, from
which we can effectively extract semantic features just like
from RGB camera images. On the other hand, BEV is scale-
invariant regardless of the distance to the sensor, so actual
geometric structures are preserved in BEV. The need of us-
ing both semantic and geometric information leads to the
combination of RV and BEV.

2.3.4 Data Augmentation

Data augmentation is extremely important for training Li-
DAR detection networks in autonomous driving scenarios,
as real-world datasets usually have severe problem of class
imbalance. For example, about half of labeled instances
in NuScenes [2] dataset are cars. A copy-and-paste aug-
mentation schematic are used in many popular detectors in-
cluding SECOND [21], PointPillars [ 1], and CBGS [26].
This method crops ground truth bounding boxes from other
frames and pastes them onto the current frame’s ground
plane. Hu et al. [7] argue that maintaining correct visibil-
ity during augmentation makes significant improvements in
detection results. The visibility information can be calcu-
lated and explicitly expressed. However, with projection on
range images, visibility is naturally encoded and requires
less computation.

3. Method

The structure of PanoNet3D is illustrated in Fig. 2. This
framework can be divided into two stages. 1) Feature ex-
traction stage: A 2D FCN generates deep semantic feature
maps from projected pseudo range images. Meanwhile, a
geometric decorator generates each point’s raw geometric
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Figure 3. Structure of a detector with 2D pillars or 3D voxels as input. The initial feature is 128 dimensional. We limit the size of the whole
scene to [—51.2,51.2] x [—51.2,51.2] x [—3, 3] meters in z, y, z direction. The networks consist of a few layers of ResNet basic blocks.
S denotes the stride of each layer and N denotes the number of blocks. The generated feature map of SFPN has the same resolution as the

layer marked in red.

features, including its global position and local displace-
ment relative to the center of its residing voxel. The se-
mantic features and geometric features are then aggregated
and passed to the next stage. 2) Detection stage: Per-
point features are converted to per-voxel features by a sim-
ple symmetric operation such as max and average pooling.
A single-stage detector then predicts oriented 3D boxes and
their confidence score based on pre-defined anchors. We de-
scribe the details of each component of the network in the
following sections. First, we will introduce pseudo-range-
image semantic extractor and voxel geometric decorator,
the combination of which generates a feature vector for each
point. Then we will discuss how to temporally aggregates
features from multiple frames. Last, we will describe how
the main detector gives prediction as well as training and
implementation details.

3.1. Pseudo Range Image and Semantic Extractor

The outputs of a common LiDAR sensor are range im-
ages by nature. However, since many LiDARS’ rings are not
evenly spaced (sometimes the ring information is not even
available), we manually project 3D point clouds back to
2D range images with evenly spaced projection angles. For
the NuScenes [2] dataset, we choose the horizontal projec-
tion angle range and resolution to be [Zyin, Timaz, Tstep] =
[—180°,180°,0.3125°] and vertical counterparts to be
[Ymin, Ymaz, Ystep] = [—30°,10°,1.25°]. It is possible that
more than one LiDAR point is mapped to the same pixel on
range image. In this case, we simply keep the closest point
and discard the rest. In addition to point’s range r, we also
encode height h, elevation angle ¢ and reflectance ¢ in sep-
arate channels. Similar to LaserNet [15], the last channel of
the image is a flag indicating whether a pixel contains a pro-

jected point. We call this multi-channel tensor (an example
is shown in Fig. 4) pseudo range image of LiDAR.

Range
Height
Elevation

Reflectance

Occupancy

Figure 4. An example of projected pseudo range image with five
channels. From top to bottom: range 7, height h, elevation angle
¢, reflectance i, and occupancy mask m.

To extract semantic features from the pseudo range im-
age, we adopt the Semantic FPN (SFPN) design from [9].
It aggregates the features from all levels of FPN layers into
a single output with per-pixel semantic embedding. The
SFPN’s backbone is a ResNet34 [6] without the first layer
(convl). For each projected LiDAR points, the SFPN gener-
ates a 64-dimensional semantic feature vector. The feature
extractor is not trained with direct supervision. Instead, the
feature vectors are passed to the main detector where they
receive supervision from the final classification and local-
ization loss.

3.2. Voxelization and Geometric Decorator

The input 3D point cloud is voxelized before being
passed into the detector. We experiment with two types of
voxelization: (1) regular 3D voxelization and (2) pillariza-
tion, where points are organized in vertical columns similar
to PointPillars [11]. Pillarization can be seen as a special
type of 3D voxelization with only one layer of voxels ver-
tically. We annotate each point’s global position [z, y, 2]
with its distance to the LiDAR origin 7 and its position rel-
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Figure 5. Occupancy maps showing the results of spatial multi-frame fusion. Yellow color indicates the pixel is occupied by a projected
LiDAR point. 7 is the occupancy rate (the number of occupied pixels over the number of total pixels). From top to bottom: original single

frame, 10-frame aggregation withn =1,n =2, n = 3.

ative to the voxel’s center at [z., Y., z.]. The resultant geo-
metric feature can be expressed as a 7-dimensional vector:
[€,y,2,7,& — e, Y — Ye, 2 — 2] Optionally, a simple one-
layer fully connected network (similar to the design of like
VoxelNet [25]) can be applied to each voxel to extract more
local features.

3.3. Semantic and Geometric Feature Aggregation

We use concatenation as the method of aggregating se-
mantic features and geometric features together. The em-
beddings of those points that are not assigned with seman-
tic features (discarded during range image projection) are
padded with zeros. For each voxel, a locally aggregated
feature vector is generated from point-wise embeddings via
symmetric pooling operations: we apply element-wise max
pooling on high-dimensional semantic features and average
pooling on low-dimensional geometric features. Now, we
are able to obtain a voxel-wise feature vector that encodes
both semantic and geometric features of the set of points
inside the voxel.

3.4. Temporal Aggregation

When multi-frame data is available, we add a timestamp
t as an additional channel to each point. Such temporal ag-
gregation requires a new design of range image projection
for semantic feature extractor. For example, when we ag-
gregate 10 consecutive sweeps, the point cloud is now 10
times denser and thus a large portion of points will be dis-
carded by the pseudo range image projection process. To
prevent such loss of information, we propose two solutions:
temporal multi-frame fusion and spatial multi-frame fusion.
The ablation study of these two aggregation methods is dis-
cussed in Section 4.4.

3.4.1 Temporal Multi-Frame Fusion

Temporal multi-frame fusion retrieves the pseudo range im-
age at each frame respectively, and then concatenates them
along a new dimension to form a batch of images as input.

This is equivalent to running the same feature extractor on
each individual frame.

3.4.2 Spatial Multi-Frame Fusion

In spatial multi-frame fusion, we transform all frames’
points to the keyframe’s coordinate system and increase the
resolution of the pseudo range image to allow more points
to be projected. The main design choice required here is the
multiple n between the new linear resolution and the single-
frame resolution. Fig. 5 shows the occupancy map of dif-
ferent n. When n is too large, the range image becomes
sparse and inefficient for dense feature extraction. Ideally,
we want the occupancy rate 7 to be as close as possible to
the original one. For NuScenes dataset (20 Hz frame rate),
we choose n = 2 for 10-frame aggregation. Notice that in
this setting, the range image has only 4 x pixels while the
3D point cloud has 10x points. When multiple points are
projected to the same pixel, we prioritize those with times-
tamps closer to the key-frame. Spatial multi-frame fusion
allows us to enhance the resolution of input range image ef-
ficiently without too much redundancy caused by close or
repeating points.

3.5. Detector

As discussed in Section 3.2, the input of the detector
can have two types of formats: 2D pillars or 3D vox-
els. The detector is designed accordingly. For 2D pil-
lar input, we can directly apply an SFPN as the back-
bone to get the final feature map. On the other hand,
for 3D voxel input with the shape of [H, W, D,C], we
first adopt a sparse 3D ResNet to downscale the tensor
to [H/sg,W/sw,D/sp,C|, where sg, sw,sp are the
downscale factors. Then we lower the dimension of the ten-
sor by reshaping it to [H /s, W/sw, D x C/sp], so that it
can be similarly fed into a 2D RPN to generate the BEV fea-
ture map. The bounding box regression head is attached to
the feature map. We follow the multi-group head design as
in CBGS [26]. The detailed detector structure is illustrated



] \ car truck bus trailer cons. pedes. mcycle bicycle cone barrier \ mAP ‘
Point Pillars [11] | 684 23.0 282 234 4.1 59.7 27.4 1.1 30.8 38.9 30.5
SARPNET [23] 599 187 194 18.0 11.6 69.4 29.8 14.2 44.6 38.3 324
CBGS [26] 81.1 485 549 429 10.5 80.1 51.5 22.3 70.9 65.7 52.8
Ours 80.1 454 540 51.6 15.1 79.1 53.1 31.3 71.8 62.9 54.5

Table 1. Detection mAP by categories compared on NuScenes test set.
\ car truck bus trailer cons. pedes. mcycle bicycle cone barrier \ mAP ‘
CBGS* [26] 79.8 458 58.6 31.1 11.7 74.8 38.3 14.2 55.0 56.6 46.6
Ours w/o sem. feat | 80.1 442 59.1 322 10.9 74.5 40.2 20.2 57.8 55.6 47.5
Ours 826 499 624 36.3 11.8 80.6 53.8 33.8 67.2 64.5 54.3

Table 2. Detection mAP by categories compared on NuScenes validation set. *: reproduced with officially released code and our experi-
mental setup. The second line shows the result of our model without aggregation of range-image-based semantic features (row i. in Tab.

3).

in Fig. 3.
3.6. Data Augmentation

We make several improvements on data augmentation
schematics used in SECOND [21]. Ground truth boxes are
cropped and saved offline, and then pasted onto the cur-
rent frame’s ground plane. Additionally, we allow the aug-
mented object to randomly rotate around the LiDAR center
within 45 degrees (its distance to the center of the frame re-
mains unchanged). We also perform global augmentations
that randomly transform the whole point cloud, including
translation (within [-0.2m, 0,2m]), rotation (within [-45°,
45°]) and scaling (within [0.95x, 1.05x]).

Newly pasted objects may occlude with other objects.
Traditional methods often ignore such occlusions, and keep
all augmented objects even they are not detectable by a real
LiDAR sensor. However, our method naturally solves this
problem by removing all annotations that have less than 3
points projected on the pseudo range image. As a result, the
objects that should not be visible to the LiDAR are easily
filtered out.

3.7. Implementation Details

Our implementation is based on CBGS’s [26] official
code base'. All object classes share the detection backbone
except an exclusive two-layer regression head for each cat-
egory group. The experiments are conducted on 4 NVIDIA
1080 Ti with PyTorch’s official implementation of multi-
GPU synchronized batch normalization. We train the net-
work with Adam optimizer [8], one-cycle policy [1] (max
learning rate: 0.0001, division factor: 5), and the batch size
of 4 for 20 epochs. The IoU threshold of the non-maximum
suppression is 0.2 and the maximum number of final pre-
dicted bounding boxes is 100. The anchors selected as the

lhttps://qithub.com/poodarchu/Det3D

mean values of all labels. On 1080 Ti, our model runs at 20
fps during inference.

4. Results

We first compare the quantitative performance of our
method against other SOTA methods on the NuScenes
dataset, while the results on the KITTI dataset are presented
in the supplemental materials. Qualitative results (visual-
ization of predictions) are shown in Fig. 4.2.4. Next, we
conduct ablation studies to explain how we make the de-
cisions during network design and show where the perfor-
mance improvements come from.

4.1. Main Results

We submitted the results of our method to the NuScenes
test server. In Tab. 1, we compare PanoNet3D against other
methods on the NuScenes detection leaderboard. Our over-
all mAP surpasses the current first-place method CBGS [26]
by 1.7%. For fairness, we also compare our method against
CBGS’s reproducible performance on NuScenes validation
set in Tab. 2. The results of CBGS are reproduced with its
official code and under the same experimental setup as ours.
Our model improves mAP on all categories including 2.5%
on car. Higher performance gains are observed on ‘tall-and-
thin’ object categories such as bicycle and cone. These ob-
jects have larger projection sizes on depth image rather than
on the BEV plane, so our model can achieve better overall
understandings compared to traditional detectors. We also
re-trained our model and baseline (CBGS) from scratch for
4 more times with different random seeds. The performance
errors of all trails are within 0.4% mAP.

4.2. Ablation Study

Tab. 3 shows a series of ablation studies. Based on these
results, we can make the following key observations. Each
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] | Method | Range image feat.  # Input frames  Voxelization BEV resolution(m) | mAP |
a. | Point Pillars [1 1] - 1 Pillar 0.25 24.0
b. | Point Pillars [11] - 10 Pillar 0.25 29.5
c. | Ours X 1 Pillar 0.25 31.5
d. | CGBS [26] - 1 Voxel 0.1 39.2
e. | Ours v 1 Voxel 0.1 43.1
f. | Ours v 1 Pillar 0.25 452
g. | Ours X 10 Voxel 0.1 46.3
h. | CGBS [26] - 10 Voxel 0.1 46.6
i. | Ours X 10 Voxel 0.05 47.5
j- | Ours v 10 Pillar 0.25 479
k. | Ours v 10 Pillar 0.1 48.0
1. | Ours v 10 Voxel 0.1 52.9
m. | Ours v 10 Voxel 0.05 54.3

Table 3. Ablation studies on NuScenes validation set. ‘range image feat.” means whether the detector uses perspective-view-based semantic
feature extractor. ‘BEV resolution’ means the x-y resolution when the point cloud is voxelized.

line of the result is represented with small letters. Across all
factors, we find that the pano-view semantic feature extrac-
tor contributes the most to the performance gain.

4.2.1 Baseline Comparison

The major difference between PanoNet3D and other de-
tectors is its range-image-based semantic feature extrac-
tor. Without the aggregation of extracted semantic features,
our pillar-based detector should have a similar framework
to PointPillar’s [11] except for the backbone design. Our
pillar-based baseline model achieves better performance
than PointPillars (a.-c.). The most likely reason is our SFPN
backbone is able to utilize multi-level features more effi-
ciently. On the other hand, for voxel-based detectors, CBGS
has similar performance to our baseline model (without the
semantic feature extractor), showing that our improvements
against CBGS do not come from the different detector back-
bones used by PanoNet3D and CBGS (g.-h.).

4.2.2 Range Image Semantic Feature Extractor

For single-frame pillar-based detectors, semantic features
extracted from range images significantly improve the av-
erage mAP by 13.7% (c.-f.). With the help of a semantic
feature extractor, our single-frame model is able to achieve
comparable results against other multi-frame models. For
multi-frame voxel-based detectors, semantic features also
improve the average mAP by over 6% (g.-1., i.-m.). From
Tab. 2, we can further observe that combining deep seman-
tic features with raw geometric features leads to improve-
ments across all 10 categories. The perspective view is nat-
ural to LiDAR sensors and contains semantics that cannot

be extracted from real-world Euclidean space, which helps
the detector to achieve a better overall understanding of the
scene.

4.2.3 Pillar or Voxel

For single-frame input, the pillar-based detector performs
slightly better (e.-f.), while for multi-frame input, the voxel-
based detector is more favorable (k.-1.). One possible expla-
nation is that the pillar-based detector is sufficient for the
density of a single-frame point cloud and can prevent over-
fitting caused by more complex 3D convolutions. Multi-
frame input has much denser point clouds whose features
can not be well extracted by the simpler pillar feature ex-
tractor.

4.2.4 BEYV Resolution

Finer grids of voxelization usually lead to better detection
performance. However, its impact is less dominant than
other factors. Increasing BEV resolution from 0.25m to
0.1m improves mAP of 10-frame pillar-based detector by
0.1% (j,-k.), and increasing BEV resolution from 0.1m to
0.05m improves mAP of 10-frame voxel-based detector by
1.4% (1.-m.).

4.3. Voxel Feature Pooling Methods

We test all pooling methods during aggregating point-
wise features to voxel-wise features. With all combina-
tions shown in Tab. 4, we conclude that max pooling on
higher-dimensional semantic features with average pooling
on lower-dimensional geometric features yields the best re-
sults.



1cOb06adac5844039dadde2bdcccdb0

0c6c611c0c1348b9b6fBe82fa62070f4

464333913294484d9d5ec247cadf923b

617d(72860495abd928aaf57dfasfa

a0

b7

ATk
B
LY
[==]=] \\Q?
AN

=
§ —~

E=
y E (=
==}

Figure 6. Detection examples of PanoNet3D on NuScenes dataset. Ground truths are annotated in green boxes and detection results are

annotated in blue boxes.

Deep sem. feat. aggr. Raw geo. feat. aggr. | mAP
Max Max 44.6

Max Average 45.2
Average Max 44.3
Average Average 44.9

Table 4. Study on pooling methods during voxel-wise feature ag-
gregation. The experiment is done with a single-frame pillar de-
tector as baseline.

4.4. Temporal Aggregation Methods

We also experiment with different temporal aggregation
approaches, the results of which are shown in Tab. 5. Spa-
tial multi-frame fusion with n = 2 is the best among them,
showing that our previous analysis is correct. However, no-
tice that the optimal n is not a fixed value. If the number of
aggregated frames or the input dataset changes, we might
need to change n accordingly to accommodate the data.

Aggregation method \ n \ mAP ‘
Temporal 10-frame fusion | - | 52.9
Spatial 10-frame fusion 1| 53.1
Spatial 10-frame fusion 2| 543
Spatial 10-frame fusion | 3 | 52.2

Table 5. Results of different multi-frame temporal aggregation ap-
proaches.

5. Conclusion

We explore the possibility of combining both semantic
and geometric understanding of 3D LiDAR point clouds.
Experiments show that both objects’ appearance to the sen-
sor and their actual shapes in 3D space are important for
detection networks. By enhancing each point’s raw geomet-
ric coordinates with deep semantic features extracted from
pseudo range images, we are able to achieve a better un-
derstanding of the scene and better overall detection perfor-
mance.
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