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Problem

» 3D object detection is an essential and fundamental problem in
autonomous driving.
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Motivation

» 3D object detection is an essential and fundamental problem in
autonomous driving.

» However, most of the existing approaches are strongly supervised and
require the availability of a large amount of well-annotated 3D data.

» On the other hand, in most applications, point clouds are recorded over
time as a data stream. A point cloud video contains richer spatio temporal
Information than a single frame.

» In this work, we propose to use this information to improve a single frame
3D object detector through semi-supervised training.
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Spatiotemporal Reasoning
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Uncertainty-weighting

Uncertainty-weighting Loss u: uncertainty

u = —slog(s) — (1 —s)log(1 —s) s: calibrated teacher’s prediction

:—(1 —u)*log(p), if s > 0.5 p:student’s prediction
\—(1 —u)*log(1—p),ifs <05 k: focusing parameter

Gradually Semi-supervised Training
Iteration 1 Iteration 2 Iteration 3
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Experiments
» 3D object detector pre-trained with 50 scenes on nuScenes train
» 500 scenes from nuScenes train for Semi-Supervised Training
» 150 scenes from nuScenes validation as test set
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Conclusion

» \We propose to leverage unlabeled point cloud videos by semi-supervised
learning

» Our method Incorporates uncertainty-aware semi-supervised training with
a GNN for spatiotemporal reasoning

» Our method achieves state-of-the-art detection performance on the
challenging nuScenes and H3D benchmarks

» Our method removes the need for excessive efforts in data annotation
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