
Physics-Aware 3D Mesh Synthesis

Jianren Wang
Carnegie Mellon University
jianrenw@andrew.cmu.edu

Yihui He
Carnegie Mellon University

he2@andrew.cmu.edu

Abstract

This paper proposes a new task which emphasizes the
importance of past-designs in 3D mesh synthesis. Instead
of synthesizing novel meshes from scratch, we introduce a
physics-aware 3D mesh synthesis algorithm, which consists
of two modules: a 3D mesh synthesis module where we use
a VAEGAN to encode 3D meshes into a latent variable and
use the decoder to generate 3D meshes from the encoded
representations; a scientific decision making module using
reinforcement learning which alters the latent representa-
tion supervised by a provided physical constraint. The re-
sults show that our approach can modify a given mesh so
that it satisfies external physical property constraints while
maintaining high appearance similarity. More importantly,
our method outperforms all baseline methods by a large
margin.

1. Introduction
3D shape synthesis is a long-standing and challenging

problem in computer vision and computer graphics. In re-
cent years, along with the exponentially growing industrial
needs that range from virtual reality [52] to 3D printing, the
capability for automated 3D prototyping becomes a critical
technique that can potentially promote the development of
several industries.

Recent researchers tackle to solve these problems
through deep learning [28], since it has shown great suc-
cess in image classification [25, 19], detection [20, 64]
and segmentation [18]. With the introduction of large 3D
datasets like ShapeNet [5, 62], many generative models
can synthesize 3D objects that are both highly varied and
realistic in voxels [59, 45], point cloud [12, 29, 33] and
meshes [17, 31, 46, 53].

However, most existing methods focus on synthesising
3D shape from scratch (i.e., propagate noise vectors through
generative models). In a more realistic setting, many pro-
totypes can be easily synthesised through modifying past
designs to meet new constraints since they may encapsulate
useful design information and are time-tested.

Figure 1. Corresponding results obtained by our learning model on
automobile mesh data. All of the mesh models on the left side are
the original data from the dataset, the mesh models on the right
are generated by our learning algorithm which, assessed by Open-
FOAM, have a smaller drag coefficient.

To emphasize this commonly used strategy in industry
(synthesis through modification), we propose a new prob-
lem: meeting the external constraints with minimal modifi-
cation of given shape priors. Specifically, the external con-
straints in this paper are physics properties, since these are
commonly considered external constraints.

Previous researches show that deep learning enables end-
to-end inference of object physical properties [4]. However,
these methods can only understand simple physical proper-
ties such as velocity [58], stability [10], deformation [55]
and are heavily constrained by specific domain. In con-
trast, computer-aided engineering tools based on Finite Ele-
ment Method (FEMs) [43] and Computation Fluid Dynam-
ics (CFDs) [21, 13] are designed to solve very complicated
physics properties, which are highly accurate and are more
adaptable to different domains. Using computational analy-
sis software available (e.g., OpenFOAM, ANSYS, etc.) we
can analyze the physical properties (e.g., drag coefficient,
thermal conductivity, strain-stress relationship, etc.) given
the shapes of the object and some predefined properties
(i.e., material, temperature, force application etc). However,
these methods are always not differentiable. To this end, we
propose an automatic physics-aware 3D mesh modification

method that utilizes both the accuracy of CAD tools and the
efficiency of deep learning.

We start with finding a good encoder and decoder given
the fact that meshes are very high-dimension data and mod-
ifying vertex by vertex is not feasible. We adopted a vari-
ational autoencoder with a generative adversarial network
(known as VAEGAN [27]) to encode meshes into embed-
ding vectors and decode embedding vectors into high real-
istic meshes. We then modify the embedding vectors using
trust region policy optimization (TRPO) [40] so that the de-
coded mesh can meet external constraints (i.e., drag coef-
ficient) while maintaining high appearance similarity. The
agent is supervised by high accuracy CAD tools. During in-
ference, we can simply do forward propagation without any
online tuning to achieve a very fast speed.

Our approach offers two unique advantages. First, by
modifying meshes at feature level, we can largely alleviate
the computational burdens and utilize more semantic infor-
mation. For example, the embedding vector may encode
some structures of some designs that have certain natures,
which can be used to modify the mesh in a more realistic
way. Second, by introducing reinforcement learning, our
model can be trained end-to-end with CAD tools, which are
always not differentiable. Thus, our method can achieve a
good speed accuracy balance.

In summarize, this paper makes three contribution: we
propose a new task that stress the synthesis by modification
strategy; we propose an efficient physics-aware 3d mesh
modification method; we demonstrate its effectiveness on
ShapeNet [47] and our method outperforms baseline meth-
ods by a large margin.

2. Related work
Data-Driven 3D Shape Synthesis Before the deep learn-
ing era, some prior works on data driven 3D shape syn-
thesis have proposed composing new objects from libraries
of parts [14, 50]. These methods typically generate re-
alistic shapes, but have a limited model expressiveness.
More recent deep network approaches [6, 15] can gener-
ate higher variability of shape by learning deep generative
3D shape models on large datasets of synthetic CAD data
(ex. ShapeNet [62]), but generally do not optimize for struc-
tural realism of generated shapes explicitly. Some other
works continuously interpolating between shapes, such that
the intermediate shapes maintain their semantic class [63].
The most commonly used structures are Variational au-
toencoders (VAE) [24] and generative adversarial networks
(GAN) [16]. The former focuses on reconstructing over-
all shapes, while the latter focuses on generating synthetic
shapes that can not be distinguished from real ones by
a classifier. Both methods focus on appearance proper-
ties. In a more realistic setting, 3D shape synthesis should
emphasize on both intuitive creativity and calculated sci-

entific decision-making. The former stress the appear-
ance properties (e.g. shapes, textures, etc) while the lat-
ter stress the physics properties (e.g. materials, stability,
etc). Our focus is injecting new capabilities to these mod-
els of reasoning about physics properties. In this paper,
we synthesis 3D shapes using meshes, since the points of
each patch are stored within the same vicinity unlike point
clouds [37, 38, 2] and are naturally adapted to CAD/CAE
tools. Additionally meshes preserve the advantage of stor-
age efficiency unlike 3D voxel [60, 32, 39, 54, 62].

Physics Reasoning Physical reasoning has raised a lot
of interest in recent years [34, 36, 65, 11]. There are
also works tackle to analyze more complex physics us-
ing machine learning, like fluid simulation. Tompson et
al. [44] accelerates the pressure projection in Euler fluid
simulations using a neural network. Chu et al. [7] use a
Siamese network to learn a distance metric between fine
and coarse simulation to synthesize the details of smoke.
Instead of solving the underlying Navier-Stokes equations,
Physicsforests [26] predict of the behavior of fluid parti-
cles based on a model trained on a large set of simula-
tions. DPI-Net [30] proposes to learn a particle-based sim-
ulator for complex control tasks in robotics, like manipu-
lating fluids and deformable foam. Umetani [48] directly
generates a time-averaged velocity field and pressure field
from given object. Although we focus on fluid simula-
tion, there are many other approaches attempt to reason
about physics in structural analysis [56], materials failure
and damage [1, 61], material constitutive properties [41]
and mechanics enhancement [22]. Unlike previous works,
our method focuses more on shape manipulation instead of
predicting physics properties. In this sense, the most related
work is Pteromys [49], which propose a human-in-the-loop
interactive design method to optimize the flight trajectories
of model airplanes.

Computer-Aided Design CAD is widely used in many
engineering fields. Computational methods aid in under-
standing the mapping between shape and function. Der-
ing et al. [9] proposed a method that predicts the functional
quantities of digital design concepts. Oh et al. [35] com-
bined generative methods with topology optimization in au-
tomobile wheel design. Specifically in CFD, one common
software in use is Open source Field Operation And Manip-
ulation (OpenFOAM) [21], which can be used to calculate
the drag coefficient Cd of a mesh model.

3. Methods
In this section, we introduce our physics-aware 3D mesh

synthesis method (Figure 2). It consists of two modules: 3D
mesh synthesis module and scientific decision making mod-

ule. 3D mesh synthesis module adopts graph VAEGAN,
which intends to find a good shape embedding and shape
decoder. Scientific decision making module takes the shape
embedding as input and output an action to manipulate the
embedding so that the decoded mesh can meet external con-
straints while maintaining high appearance similarity. Dur-
ing inference, we can simply do forward propagation with-
out any online tuning to achieve a very fast speed. We’ll
discuss each component in detail.

3.1. 3D Mesh Synthesis Module

Meshes are naturally adapted to CAD/CAE tools, and
are thus suitable for physics reasoning. However, it is not
feasible to directly manipulating meshes since they usually
contains thousands of vertices. We thus propose 3D mesh
synthesis module to encode meshes into embedding vectors
and decode these vectors to get high fidelity meshes. We
adopted VAEGAN with graph convolutional layers. The
whole system contains an encoder (Enc), decoder (Dec)
and discriminator (Dis). We first encode a mesh x into a
latent representation z and decode the latent representation
back to data space, respectively:

z ∼ Enc(x) = q(z|x), x̃ ∼ Dec(z) = p(x|z) (1)

The VAE regularizes the encoder by imposing a prior over
the latent distribution p(z). In our case, z ∼ N(0, I). The
objectiveness of VAE is to minimize the reconstruction loss
(Lrecon) and a prior regularization term (LKL):

Lrecon = ‖x̃− x‖2 (2)

LKL = DKL(q(z|x)‖p(z)) (3)

, where DKL represents the Kullback-Leibler divergence.
For more details, please refer to [27].

A discriminator is used to ensure generated shape realis-
tic. We use binary cross entrophy as the classification loss,
and present the adversarial loss function as:

LGAN = logDis(x) + log((1−Dis(x̃)) (4)

Formally, our overall loss function can be writen as:

L = Lrecon + α1LKL + α2LGAN (5)

where α1 and α2 are weighting factors of KL divergence
loss and adversarial loss.

The internal details of the encoder (Enc), decoder (Dec)
and discriminator (Dis) are largely influenced by the choice
of the 3D shape representation. To preserve the connection
information in the mesh data, our method is primarily com-
posed of the dynamic filtering graph convolutional layers
proposed in FeaStNet [51]. The input to the layer is a fea-
ture vector field on the mesh vertices, where each vertex i

is attached a feature f ini . The output is also a vector field
fouti , possibly of a different dimension, computed as:

fouti = b+

M∑
m=1

1

|Ni|
∑
j∈Ni

qm(f ini , f
in
j)Wmf

in
j (6)

, where Ni denoting a patch that contains the vertex i,
qm(f ini , f

in
j) ∝ exp (uTm(f ini , f

in
j) + cm) are the positive

edge weights in that patch and normalized to sum to one
over m. Wm, um, cm and b are trainable weights, while
the number of weight matrices M is a tunable hyperparam-
eter [51]. Please refer to Figure 2 and [51] for more details.

3.2. Scientific Decision Making Module

Scientific decision making module takes the shape em-
bedding as input and output an action to manipulate the em-
bedding so that the decoded mesh meets the external con-
straints with minimal changes. In our case, we focuses on
drag coefficients for automobile models. The drag coeffi-
cient is a scalar representing the drag or resistance of an
object in a fluid environment, which is an important design
variable for automobiles. Intuitively, the smaller the drag
coefficient the more streamline the object is. The drag co-
efficient is defined as

Cd =
2Fd
ρu2A

(7)

where Fd is the drag force (in the direction of flow veloc-
ity), ρ is the mass density of the fluid, u is the flow speed of
the object relative to the fluid and A is the reference area.
We use OpenFOAM (Fop) — an open source CFD software
to obtain the drag coefficient (Cd) from given mesh (x):
Cd = Fop(x). After assessing the drag coefficient of the
3D generated mesh, we introduce a one step reinforcement
on mesh embedding space to reduce the difference in drag
coefficient between the target and the generated model.

Formally, we denote the policy of scientific decision
making agent as π, the state of agent as s, and the action
of agent as a ∼ π(s). The state includes both mesh embed-
ding z ∼ Enc(x) and target drag coefficient Ctd:

s = [z, Ctd] (8)

Specifically, we concatenate z with Ctd in the vector space.
The policy is trained to minimize the difference between

Cd of synthesized mesh and Ctd as well as the difference
between modified mesh and original mesh:

π = arg min
a∼π(s)

‖Fop(Dec(a+z))−Ctd‖2+λ‖Dec(a+z)−x‖2
(9)

, where λ is a weighting factor to balance the aforemen-
tioned two differences.

B
A

T
C

H
 N

O
R

M

LIN(16)

B
A

T
C

H
 N

O
R

M

GCONV(32)

REF

SHAPE

GCONV

(64)

GCONV

(96)

GCONV

(128)

No BN

MEAN

POOL

FC

(2X128)

SAMPLE

μ

Σ

DECODER

(GENERATOR)

DISCRIMINATOR

REC

SHAPE

z

LIN(128) LIN(128)

μ

Σ

SAMPLEFC

(2X128)

DECODER

(GENERATOR)

z

STATE

+

OpenFOAM

DRAG COEF

LIFT COEF

VELOCITY FIELD

.

.

.

PRESSURE

REWARD

3D MESH SYNTHESIS

SCIENTIFIC DECISION MAKING

Cd

POLICY

INFERENCE

-

MESH ENCODER z Cd POLICY MESHGENERATOR+

A

ACTION

A

Figure 2. At the top we have our 3D mesh synthesis module which intends to encode and decode a high-dimensional mesh, in the middle
we presents our scientific decision making module which modifies mesh embedding z to satisfy the external constraints with minimal
modification of given shape priors. In the bottom we show the inference of our method.

Please note the action a has the same dimension as the
mesh embedding z, and thus can be added to z to generate
a new embedding. During training, the reward is set to the
negative of the objectiveness, which is:

r = −(‖Fop(Dec(a+ z))−Ctd‖2 + λ‖Dec(a+ z)− x‖2)
(10)

We use trust region policy optimization (TRPO) to optimize
our policy π(a|s).

3.3. Inference

During inference, we adopt the encoder Enc, decoder
Dec from mesh synthesis module and the policy π from
scientific decision making module. Given original mesh x
and target drag coefficient Ctd, the physics-aware mesh x′

can be synthesized using:

x′ = Dec(π([Env(x), Ctd]) + Enc(x)) (11)

Without any online tuning, our proposed method con-
tains only forward propagation and thus achieves a very fast
inference speed.

Figure 3. Random automobile shapes generated by the 3D mesh
synthesis module. We explicitly relaxed the Gaussian prior on the
latent variables during training to obtain a variety of automobile
shapes. With the usage of GAN we can ensure that the generated
automobile models are realistic even with this relaxation.

3.4. Technical Details

Dataset We use automobile shape data as proposed in
[47] for training and validation, which consists of 1241
different automobile meshes spanning all automobile cat-
egories. We manually modify the shape to remove the side

mirrors, spoilers and tires. We divided the data into a train-
ing set which has 868 samples and a validation set which
has 373 samples.

Mesh Synthesis Network The encoder Enc includes a
linear layer (16), graph convolutional layers (32, 64, 96 and
128), and a mean pooling layer. The number denotes the
channel number of each layer. Each graph convolutional
layer is followed by a batch norm layer, a ReLU layer with
the exception of the last one, which is not followed by a
batch norm layer. The decoder and discriminator shares a
common architecture by inversing the encoder. The last lin-
ear layer of the decoder has 3 channels indicate the coordi-
nates of each point while the last linear layer of the discrim-
inator has only two channels indicate the binary classifica-
tion.

Decision Making Network To estimate the drag coeffi-
cient, we first simulated 10 seconds of air flow, due to the
instabilization issue with the initial air flows we take the
results for the last 4 seconds and used the mean. We sim-
ulate the fluid flow using OpenFoam Navier-Stokes solver
with the k − ε turbulence model [57] and SUPG stabiliza-
tion [42]. The simulation runs on tetrahedral mesh that con-
forms to the boundary. We made the mesh around the sur-
face and the rear of the car to be finer in order to resolve the
boundary layer and separated vortices resulting from non-
slip boundary condition. To obtain a more realistic result
we set the car to drive in an air speed of 72 km/h, which has
Re = 5× 106.

The input layer of TRPO has 256 channels which is the
same as state dimension. We duplicate the target drag co-
efficient 128 times before concatenating with the mesh em-
bedding (128-dim), which forms a 256-dim state vector. We
want the decision making agent to focus more on the target
drag coefficient.

Training We trained our mesh synthesis network and de-
cision making network separately. For mesh synthesis,
we trained the model directly on the 3 × N input meshes
obtained from the automobile shape dataset as described
above. The data is augmented by adding normally dis-
tributed noise to the vertices positions as well as a global
translation and scaling planar. In each iteration of the train-
ing, we first get a sample z from the latent distribution.
Then we update the encoder Enc, the decoder Dec, and
the discriminator Dis sequentially. We use the ADAM op-
timizer [23] with the learning rate of Enc set to 10−4, Dec
set to 10−4 and Dis to 0.5−4. We train the synthesis mod-
ule for 5× 105 iterations with a batch size of 8.

For the decision making network we used TRPO. We
first sampled 16 latent variables from the variational dis-
tribution generated by the encoder, and then treated them

as the whole dataset. For each of these small datasets, we
trained the network for 100 epochs with a learning rate of
10−3.

4. Experiments

In this section, we demonstrate results for both 3D mesh
synthesis and scientific decision making. We trained our al-
gorithm on the automobile shape data. The Physics-Aware
VAEGAN is trained on data from [47], which consists of
1241 different automobile meshes spanning all automobile
categories with the exception of cargo trucks. We per-
formed a thorough comparison for the 3D mesh synthesis
quality of our method with a variety of benchmarks, and we
evaluated the performance based on root mean squared er-
ror (RMSE), estimated physics parameters, and volumetric
error.

4.1. 3D Mesh Synthesis Results

Using VAEGAN combined with graph convolutional
layers, we can generate models with high variance, as
shown in Figure 3. We can observe that our algorithm
preserves both high-frequency information (i.e., the bump
on the hood) and low-frequency information (i.e., car ra-
tio) in the mesh data. Our algorithm also generalizes this
high-quality 3D mesh synthesize to a variety of automobile
shapes.

In terms of reconstruction, our method achieves very low
reconstruction losses. We compare our method with VAE
(FC), which concatenates all vertices together as a large
vector and VAE (Graph Conv), which doesn’t use discrim-
inator. The quantitative results are presented in Table 1,
where RMSE represents the average displacement for each
of the vertices, and the volumetric error represents the dif-
ference in volume size. As we can observe, our approach
produces the best outcome in both RMSE and volumetric
error.

Figure 4 shows synthesized meshes as the result of lin-
ear interpolation in the latent space. The source (left-most
shape) and target (right-most shape) 3D shapes are passed
through the encoder to obtain the corresponding latent rep-
resentation, then we did a linear interpolation between the
source and target latent representation, finally we passed
these latent variables through the decoder to produce a
highly non-linear interpolation in the 3D shape space R3.
Many encoding methods would produce latent variables
that do not correspond to any meaning full data in the pres-
ence of small variations. However, we demonstrate our ap-
proach can produce meaningful latent representations even
when interpolation between two latent variables (Figure 4).
By using VAEGAN we can more efficiently utilize the la-
tent variables.

Figure 4. Latent space interpolation. Interpolation between two automobile mesh models (left- and right-most mesh models) obtained
using a linear interpolation in the latent space.

Cd = 0.393 Cd = 0.389 Cd = 0.413 Cd = 0.352

Cd = 0.315 Cd = 0.310 Cd = 0.276 Cd = 0.256

Cd = 0.429 Cd = 0.422 Cd = 0.378 Cd = 0.410

Original VAEGAN CGAN Ours

Figure 5. This figure compares the drag coefficient of the synthesized 3D shape between using VAE, Conditional GAN (CGAN), Ours and
the original mesh data. For the three rows, the target drag coefficients are set to 0.35, 0.25 and 0.40, respectively. The goal for CGAN and
Ours is to reach the target drag coefficient by exploring latent space. Note that the generation for VAEGAN and the original data does not
take in the drag coefficient as a constrain.

Table 1. 3D Synthesis Error

Method RMSE(m) Volumetric err. [%]

VAE (FC) 11.1× 10−2 9.35
VAE (Graph Conv) 3.6× 10−2 4.03
Ours 3.3× 10−2 3.39

4.2. Scientific Decision Making Results

We compare our proposed scientific decision-making
module with the baseline conditional GAN method

(CGAN) [8]. Our module is trained and tested in the way,
as mentioned in Section 3. For CGAN, during training, we
randomly choose a mesh whose drag coefficient is within
a threshold of the target drag coefficient as positive label.
The discriminative model is trained to distinguish the syn-
thesis mesh from positive mesh. We randomly sample from
[Cd(original)−1.0, Cd(original)+1.0] as target drag co-
efficient of corresponding mesh.

Evaluation of our success consists of two parts. One is
the ability to satisfy the physical constraint in the form of
drag coefficient, the other is the intuitively correct design

Table 2. Scientific Decision Making Error

Method Cd Error RMSE(m)

Conditional GAN [8] 2.21× 10−1 4.46× 10−1

Ours 1.46× 10−1 1.87× 10−1

Figure 6. This figure shows the error distribution where the x-axis
represents the difference between the target and original 3D shape
drag coefficient and the y-axis represents the difference between
the drag coefficient for the synthesized mesh and target drag coef-
ficient.

based on appearance. Our final goal is to use the latent vari-
able representation of the original automobile mesh model
to generate an automobile mesh model that is both close to
the original model while also satisfying the physical con-
straints.

During inference instead of sampling, we take the mean
of the output action probability density function. By adding
the action to the latent variable, we obtain a new mesh em-
bedding, which is later passed through the decoder for syn-
thesizing the target mesh. We calculate the drag coefficient
of the target mesh using the same setup as mentioned in Sec-
tion 3. We report the absolute error between the drag coef-
ficient of the target mesh and target drag coefficient, which
is shown in Figure 6. We observe that when the target drag
coefficient is farther away from the original drag coefficient,
the error is also larger. This means our model can modify
the shape more accurately when the δCd is small, which is
very easy to understand. We also observe consistent im-
provement above the baseline method under all cases.

Table 2 depicts when compared with CGAN, our drag
coefficient reconstruction error is 50% less, this shows that
our policy network can more accurately find the direction of
change in the latent space to satisfy the constraints in fluid
dynamics. On the other hand, we also report the RMSE dis-
tance between target mesh and original mesh, which further
prove that our method can achieve a higher Cd accuracy
with relatively less modification. Additionally, compared to
CGAN our approach produces more realistic 3D shapes.

Figure 5 shows when we keep the type of automobile in
the same category using our approach, CGAN will attempt
to generate a 3D shape that belongs to a different automo-
bile type for lowering the drag coefficient. We can clearly
see in the bottom row when we are optimizing for pickup
trucks the result of CGAN is an SUV. A limited amount of
data for pickup trucks in the dataset is the main reason that
causes difficulties for CGAN to capture edge cases. How-
ever, our model learns general knowledge about modifying
shapes to fit target drag coefficients and thus alleviate the
problem of overfitting to training dataset and can better gen-
eralize to novel shapes.

As we can see from Figure 7, our approach has the abil-
ity to change the drag coefficient based on the provided tar-
get drag coefficient. The scientific decision making module
learns to both manipulate local and global features of the
3D shape in altering its fluid dynamic properties. When
the target coefficient makes our scientific decision making
module to increase the drag coefficient, we noticed a widen-
ing in the car front, a steepening in the front surface and also
increasing the angle of elevation for the tail. When the goal
is to decrease the drag coefficient, the synthesized 3D shape
tends to be more streamlined, decreasing the surface of the
front face and lower the angle of elevation for the tail. All
of these changes align with common physical intuition.

5. What does the scientific decision making
module learn?

It is interesting to understand why the scientific deci-
sion making module can change the embedding vector to
fit target physical parameters. In this section, we provide a
more detailed analysis on what "physical law" this module
learns through analysis of the pressure field before and after
physics parameters fitting using Paraview [3].

In Figure 8, it shows the relative pressure of the pressure
field of two meshes. We set the target drag coefficient to
0.35, and the original 3D shape (the top one) has a drag co-
efficient of 0.418. The synthesized mesh has a drag coeffi-
cient of 0.348, which is closer to the target drag coefficient.
By analyzing the pressure field of the original and the im-
proved meshes, we could see the policy network has learned
to affect the pressure field and reach the target drag coeffi-
cient through controlling the shape of the mesh. By making
the back of the car more tilted, the recirculation zone of
the improved mesh is smaller than the original one which
helps in reducing the horizontal force applied on the vehi-
cle. Also, by smoothing the outline of the mesh, we could
see the pressure field of the improved 3D shape becomes
smoother. The boundary layer of the shape is also becom-
ing thinner to reduce the force on the mesh. Reducing the
front area of the hood makes the pressure distributed more
evenly on the front area, thus helps with decreasing the to-
tal horizontal force on the mesh. In figure 9, the angles of

Original

0.418

0.350

0.348

0.450

0.455

Original

0.268

0.320

0.323

0.220

0.221

Figure 7. Our model has the ability to reach the target drag coef-
ficient according to the given drag coefficient. For the right-most
column, we have the target drag coefficient on the top and the drag
coefficient of the actual drag coefficient of the synthesized model
in the bottom. Also, the front of the car became more streamlined
to achieve smaller drag coefficient. While to have a larger drag
coefficient, the synthesized mesh developed thicker front. These
alternations align with our physical intuition.

attack for the front and back of the original mesh are al-
tered to make the pressure difference of the mesh smaller.
In conclusion, our policy network has obtained the sense of
pressure field around the synthesized mesh and utilized it to
change the shape in reaching the target drag coefficient.

6. Conclusion

This paper proposes a new task which emphasizes the
importance of past-designs in 3D mesh synthesis. We also
introduce a novel method that tackles to solve this prob-

Figure 8. Pressure field before(top) and after(bottom) physics pa-
rameters fitting. Drag coefficient of the car on the top is 0.418, on
the bottom is 0.348.

Figure 9. Pressure field before(top) and after(bottom) physics pa-
rameters fitting. Drag coefficient of the car on the top is 0.258, on
the bottom is 0.203.

lem. The algorithm consists of two modules: 3D mesh
synthesis module where we use a VAEGAN to encode 3D
meshes into a mesh embedding and use the decoder to syn-
thesize 3D meshes from the encoded representations; sci-
entific decision making module using a policy gradient al-
gorithm which alters the mesh embedding to meet the ex-
ternal constraints with minimal modification of given shape
priors. Using a dataset of 3D automobile meshes, we val-
idate our approach on two criteria: the ability to synthe-
size 3D shapes with the physical property constrained; the
similarity of synthesized mesh with origin one in appear-
ance. Experimentally we show that our approach can satisfy
these two criteria. Additionally we show that our method
outperform baseline methods in both 3D shape reconstruc-
tion and physical constraints satisfaction. One limitation is
we only explored the drag coefficient for automobiles. But
please notice our approach can easily adapt to similar physi-
cal properties (e.g. stability) for meshes in other categories.
We leave to future work the task of extending to other prop-
erties on a variety of objects.

References
[1] M. Abendroth and M. Kuna. Determination of deformation

and failure properties of ductile materials by means of the
small punch test and neural networks. computational mate-
rials Science, 28(3-4):633–644, 2003. 2

[2] P. Achlioptas, O. Diamanti, I. Mitliagkas, and L. Guibas.
Learning representations and generative models for 3d point
clouds. arXiv preprint arXiv:1707.02392, 2017. 2

[3] J. Ahrens, B. Geveci, and C. Law. Paraview: An end-user
tool for large data visualization. The visualization handbook,
2005. 7

[4] Z. Boukouvalas, D. C. Elton, P. W. Chung, and M. D. Fuge.
Independent vector analysis for data fusion prior to molecu-
lar property prediction with machine learning. arXiv preprint
arXiv:1811.00628, 2018. 1

[5] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan,
Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su,
et al. Shapenet: An information-rich 3d model repository.
arXiv preprint arXiv:1512.03012, 2015. 1

[6] C. B. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese. 3d-
r2n2: A unified approach for single and multi-view 3d object
reconstruction. In European conference on computer vision,
pages 628–644. Springer, 2016. 2

[7] M. Chu and N. Thuerey. Data-driven synthesis of smoke
flows with cnn-based feature descriptors. ACM Transactions
on Graphics (TOG), 36(4):69, 2017. 2

[8] B. Dai, S. Fidler, R. Urtasun, and D. Lin. Towards diverse
and natural image descriptions via a conditional gan. In Pro-
ceedings of the IEEE International Conference on Computer
Vision, pages 2970–2979, 2017. 6, 7

[9] M. L. Dering and C. S. Tucker. A convolutional neural net-
work model for predicting a product’s function, given its
form. Journal of Mechanical Design, 139(11):111408, 2017.
2

[10] Y. Du, Z. Liu, H. Basevi, A. Leonardis, B. Freeman,
J. Tenenbaum, and J. Wu. Learning to exploit stability for 3d
scene parsing. In S. Bengio, H. M. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems 31: An-
nual Conference on Neural Information Processing Sys-
tems 2018, NeurIPS 2018, 3-8 December 2018, Montréal,
Canada., pages 1733–1743, 2018. 1

[11] M. Edmonds, F. Gao, X. Xie, H. Liu, S. Qi, Y. Zhu,
B. Rothrock, and S.-C. Zhu. Feeling the force: Integrating
force and pose for fluent discovery through imitation learn-
ing to open medicine bottles. In 2017 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS),
pages 3530–3537. IEEE, 2017. 2

[12] H. Fan, H. Su, and L. J. Guibas. A point set generation net-
work for 3d object reconstruction from a single image. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 605–613, 2017. 1

[13] C. Fletcher. Computational techniques for fluid dynamics.,
2nd Edition. Springer, 1991. 1

[14] T. Funkhouser, M. Kazhdan, P. Shilane, P. Min, W. Kiefer,
A. Tal, S. Rusinkiewicz, and D. Dobkin. Modeling by ex-
ample. In ACM transactions on graphics (TOG), volume 23,
pages 652–663. ACM, 2004. 2

[15] R. Girdhar, D. F. Fouhey, M. Rodriguez, and A. Gupta.
Learning a predictable and generative vector representation
for objects. In European Conference on Computer Vision,
pages 484–499. Springer, 2016. 2

[16] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. C. Courville, and Y. Bengio.
Generative adversarial nets. In Z. Ghahramani, M. Welling,

C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems 27: An-
nual Conference on Neural Information Processing Systems
2014, December 8-13 2014, Montreal, Quebec, Canada,
pages 2672–2680, 2014. 2

[17] T. Groueix, M. Fisher, V. G. Kim, B. C. Russell, and
M. Aubry. A papier-mâché approach to learning 3d surface
generation. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 216–224, 2018.
1

[18] K. He, G. Gkioxari, P. Dollar, and R. Girshick. Mask r-cnn.
In The IEEE International Conference on Computer Vision
(ICCV), Oct 2017. 1

[19] Y. He, X. Liu, H. Zhong, and Y. Ma. Addressnet: Shift-
based primitives for efficient convolutional neural networks.
In 2019 IEEE Winter Conference on Applications of Com-
puter Vision (WACV), pages 1213–1222. IEEE, 2019. 1

[20] Y. He, C. Zhu, J. Wang, M. Savvides, and X. Zhang. Bound-
ing box regression with uncertainty for accurate object de-
tection. In 2019 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, 2019. 1

[21] H. Jasak, A. Jemcov, and Z. Tukovic. Openfoam: A c++
library for complex physics simulations. 11 2013. 1, 2

[22] A. Javadi, T. Tan, and M. Zhang. Neural network for con-
stitutive modelling in finite element analysis. Computer As-
sisted Mechanics and Engineering Sciences, 10(4):523–530,
2003. 2

[23] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014. 5

[24] D. P. Kingma and M. Welling. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013. 2

[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in neural information processing systems, pages
1097–1105, 2012. 1

[26] L. Ladicky, S. Jeong, N. Bartolovic, M. Pollefeys, and
M. Gross. Physicsforests: real-time fluid simulation using
machine learning. In ACM SIGGRAPH 2017 Real Time
Live!, pages 22–22. ACM, 2017. 2

[27] A. B. L. Larsen, S. K. Sønderby, H. Larochelle, and
O. Winther. Autoencoding beyond pixels using a learned
similarity metric. In M. Balcan and K. Q. Weinberger, ed-
itors, Proceedings of the 33nd International Conference on
Machine Learning, ICML 2016, New York City, NY, USA,
June 19-24, 2016, volume 48 of JMLR Workshop and Con-
ference Proceedings, pages 1558–1566. JMLR.org, 2016. 2,
3

[28] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature,
521(7553):436, 2015. 1

[29] K. Li, T. Pham, H. Zhan, and I. Reid. Efficient dense point
cloud object reconstruction using deformation vector fields.
In Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 497–513, 2018. 1

[30] Y. Li, J. Wu, R. Tedrake, J. B. Tenenbaum, and A. Tor-
ralba. Learning particle dynamics for manipulating rigid
bodies, deformable objects, and fluids. arXiv preprint
arXiv:1810.01566, 2018. 2

[31] O. Litany, A. Bronstein, M. Bronstein, and A. Makadia. De-
formable shape completion with graph convolutional autoen-
coders. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1886–1895, 2018. 1

[32] S. Liu, L. Giles, and A. Ororbia. Learning a hierarchical
latent-variable model of 3d shapes. In 2018 International
Conference on 3D Vision (3DV), pages 542–551. IEEE,
2018. 2

[33] P. Mandikal, K. L. Navaneet, M. Agarwal, and R. V. Babu.
3D-LMNet: Latent embedding matching for accurate and
diverse 3d point cloud reconstruction from a single image.
In Proceedings of the British Machine Vision Conference
(BMVC), 2018. 1

[34] R. Mottaghi, M. Rastegari, A. Gupta, and A. Farhadi. “what
happens if...” learning to predict the effect of forces in im-
ages. In European Conference on Computer Vision, pages
269–285. Springer, 2016. 2

[35] S. Oh, Y. Jung, I. Lee, and N. Kang. Design automation
by integrating generative adversarial networks and topology
optimization. In ASME 2018 International Design Engi-
neering Technical Conferences and Computers and Infor-
mation in Engineering Conference, pages V02AT03A008–
V02AT03A008. American Society of Mechanical Engineers,
2018. 2

[36] L. Pinto, D. Gandhi, Y. Han, Y.-L. Park, and A. Gupta. The
curious robot: Learning visual representations via physical
interactions. In European Conference on Computer Vision,
pages 3–18. Springer, 2016. 2

[37] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep
learning on point sets for 3d classification and segmentation.
In 2017 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26,
2017, pages 77–85, 2017. 2

[38] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep
hierarchical feature learning on point sets in a metric space.
In I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach,
R. Fergus, S. V. N. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems 30: An-
nual Conference on Neural Information Processing Systems
2017, 4-9 December 2017, Long Beach, CA, USA, pages
5105–5114, 2017. 2

[39] G. Riegler, A. Osman Ulusoy, and A. Geiger. Octnet: Learn-
ing deep 3d representations at high resolutions. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3577–3586, 2017. 2

[40] J. Schulman, S. Levine, P. Abbeel, M. I. Jordan, and
P. Moritz. Trust region policy optimization. In F. R. Bach and
D. M. Blei, editors, Proceedings of the 32nd International
Conference on Machine Learning, ICML 2015, Lille, France,
6-11 July 2015, volume 37 of JMLR Workshop and Confer-
ence Proceedings, pages 1889–1897. JMLR.org, 2015. 2

[41] C. Settgast, M. Abendroth, and M. Kuna. Constitutive
modeling of plastic deformation behavior of open-cell foam
structures using neural networks. Mechanics of Materials,
131:1–10, 2019. 2

[42] T. E. Tezduyar. Stabilized finite element formulations for
incompressible flow computations. In Advances in applied
mechanics, volume 28, pages 1–44. Elsevier, 1991. 5

[43] R. W. Thatcher. Theory and application of the finite element
method. PhD thesis, Imperial College London, UK, 1971. 1

[44] J. Tompson, K. Schlachter, P. Sprechmann, and K. Per-
lin. Accelerating eulerian fluid simulation with convolutional
networks. In Proceedings of the 34th International Con-
ference on Machine Learning-Volume 70, pages 3424–3433.
JMLR. org, 2017. 2

[45] S. Tulsiani, A. A. Efros, and J. Malik. Multi-view con-
sistency as supervisory signal for learning shape and pose
prediction. In Computer Vision and Pattern Regognition
(CVPR), 2018. 1

[46] S. Tulsiani, H. Su, L. J. Guibas, A. A. Efros, and J. Malik.
Learning shape abstractions by assembling volumetric prim-
itives. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2635–2643, 2017. 1

[47] N. Umetani. Exploring generative 3d shapes using autoen-
coder networks. In D. Gutierrez and H. Huang, editors,
SIGGRAPH Asia 2017 Technical Briefs, Bangkok, Thailand,
November 27 - 30, 2017, pages 24:1–24:4. ACM, 2017. 2, 4,
5

[48] N. Umetani and B. Bickel. Learning three-dimensional flow
for interactive aerodynamic design. ACM Transactions on
Graphics (TOG), 37(4):89, 2018. 2

[49] N. Umetani, Y. Koyama, R. Schmidt, and T. Igarashi.
Pteromys: interactive design and optimization of free-
formed free-flight model airplanes. ACM Transactions on
Graphics (TOG), 33(4):65, 2014. 2

[50] O. Van Kaick, H. Zhang, G. Hamarneh, and D. Cohen-Or.
A survey on shape correspondence. In Computer Graphics
Forum, volume 30, pages 1681–1707. Wiley Online Library,
2011. 2

[51] N. Verma, E. Boyer, and J. Verbeek. Feastnet: Feature-
steered graph convolutions for 3d shape analysis. In 2018
IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018,
pages 2598–2606, 2018. 3

[52] J. Wang, L. Qian, E. Azimi, and P. Kazanzides. Prioritization
and static error compensation for multi-camera collaborative
tracking in augmented reality. In 2017 IEEE Virtual Reality
(VR), pages 335–336. IEEE, 2017. 1

[53] N. Wang, Y. Zhang, Z. Li, Y. Fu, W. Liu, and Y.-G. Jiang.
Pixel2mesh: Generating 3d mesh models from single rgb im-
ages. In Proceedings of the European Conference on Com-
puter Vision (ECCV), pages 52–67, 2018. 1

[54] P.-S. Wang, Y. Liu, Y.-X. Guo, C.-Y. Sun, and X. Tong.
O-cnn: Octree-based convolutional neural networks for 3d
shape analysis. ACM Transactions on Graphics (TOG),
36(4):72, 2017. 2

[55] Z. Wang, S. Rosa, L. Xie, B. Yang, S. Wang, N. Trigoni,
and A. Markham. Defo-net: Learning body deformation us-
ing generative adversarial networks. In 2018 IEEE Inter-
national Conference on Robotics and Automation (ICRA),
pages 2440–2447. IEEE, 2018. 1

[56] Z. Waszczyszyn and L. Ziemiański. Neural networks
in mechanics of structures and materials–new results and
prospects of applications. Computers & Structures, 79(22-
25):2261–2276, 2001. 2

[57] D. C. Wilcox et al. Turbulence modeling for CFD, volume 2.
DCW industries La Canada, CA, 1998. 5

[58] J. Wu, E. Lu, P. Kohli, B. Freeman, and J. Tenenbaum.
Learning to see physics via visual de-animation. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems 30, pages 153–164. Curran As-
sociates, Inc., 2017. 1

[59] J. Wu, Y. Wang, T. Xue, X. Sun, B. Freeman, and J. Tenen-
baum. Marrnet: 3d shape reconstruction via 2.5 d sketches.
In Advances in neural information processing systems, pages
540–550, 2017. 1

[60] J. Wu, C. Zhang, T. Xue, B. Freeman, and J. Tenen-
baum. Learning a probabilistic latent space of object shapes
via 3d generative-adversarial modeling. In D. D. Lee,
M. Sugiyama, U. von Luxburg, I. Guyon, and R. Garnett,
editors, Advances in Neural Information Processing Sys-
tems 29: Annual Conference on Neural Information Process-
ing Systems 2016, December 5-10, 2016, Barcelona, Spain,
pages 82–90, 2016. 2

[61] X. Wu, J. Ghaboussi, and J. Garrett Jr. Use of neural net-
works in detection of structural damage. Computers & struc-
tures, 42(4):649–659, 1992. 2

[62] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and
J. Xiao. 3d shapenets: A deep representation for volumetric
shapes. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1912–1920, 2015. 1, 2

[63] M. E. Yumer, S. Chaudhuri, J. K. Hodgins, and L. B. Kara.
Semantic shape editing using deformation handles. ACM
Transactions on Graphics (TOG), 34(4):86, 2015. 2

[64] C. Zhu, Y. He, and M. Savvides. Feature selective anchor-
free module for single-shot object detection. arXiv preprint
arXiv:1903.00621, 2019. 1

[65] Y. Zhu, C. Jiang, Y. Zhao, D. Terzopoulos, and S.-C. Zhu.
Inferring forces and learning human utilities from videos.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3823–3833, 2016. 2

